Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Neural Eng ; 18(1)2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33217752

RESUMO

Objective.Scalp high-frequency oscillations (HFOs) are a promising biomarker of epileptogenicity in infantile spasms (IS) and many other epilepsy syndromes, but prior studies have relied on visual analysis of short segments of data due to the prevalence of artifacts in EEG. Here we set out to robustly characterize the rate and spatial distribution of HFOs in large datasets from IS subjects using fully automated HFO detection techniques.Approach.We prospectively collected long-term scalp EEG data from 12 subjects with IS and 18 healthy controls. For patients with IS, recording began prior to diagnosis and continued through initiation of treatment with adrenocorticotropic hormone (ACTH). The median analyzable EEG duration was 18.2 h for controls and 84.5 h for IS subjects (∼1300 h total). Ripples (80-250 Hz) were detected in all EEG data using an automated algorithm.Main results.HFO rates were substantially higher in patients with IS compared to controls. In IS patients, HFO rates were higher during sleep compared to wakefulness (median 5.5 min-1and 2.9 min-1, respectively;p = 0.002); controls did not exhibit a difference in HFO rate between sleep and wakefulness (median 0.98 min-1and 0.82 min-1, respectively). Spatially, IS patients exhibited significantly higher rates of HFOs in the posterior parasaggital region and significantly lower HFO rates in frontal channels, and this difference was more pronounced during sleep. In IS subjects, ACTH therapy significantly decreased the rate of HFOs.Significance.Here we provide a detailed characterization of the spatial distribution and rates of HFOs associated with IS, which may have relevance for diagnosis and assessment of treatment response. We also demonstrate that our fully automated algorithm can be used to detect HFOs in long-term scalp EEG with sufficient accuracy to clearly discriminate healthy subjects from those with IS.


Assuntos
Ondas Encefálicas , Espasmos Infantis , Eletroencefalografia , Humanos , Couro Cabeludo , Sono , Espasmos Infantis/diagnóstico , Vigília
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 2426-2429, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30440897

RESUMO

Bi-directional brain-computer interfaces for the restoration of movement and sensation must simultaneously record neural signals and deliver cortical stimulation. This poses a challenge since stimulation artifacts can be orders of magnitude stronger than neural signals. In this article, we propose a novel subspace-based method for the removal of cortical electrical stimulation artifacts. We demonstrate the practical application of our approach on experimentally recorded electroencephalogram data, where artifacts were suppressed by as much as $30-40\mathrm {d}\mathrm {B}$. Our method is computationally simple, yet it achieves superior results to the state-of-the art methods.


Assuntos
Artefatos , Interfaces Cérebro-Computador , Encéfalo/fisiologia , Estimulação Elétrica , Eletroencefalografia , Humanos , Movimento
3.
Cereb Cortex ; 28(8): 2752-2762, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28981644

RESUMO

While prior noninvasive (e.g., electroencephalographic) studies suggest that the human primary motor cortex (M1) is active during gait processes, the limitations of noninvasive recordings make it impossible to determine whether M1 is involved in high-level motor control (e.g., obstacle avoidance, walking speed), low-level motor control (e.g., coordinated muscle activation), or only nonmotor processes (e.g., integrating/relaying sensory information). This study represents the first invasive electroneurophysiological characterization of the human leg M1 during walking. Two subjects with an electrocorticographic grid over the interhemispheric M1 area were recruited. Both exhibited generalized γ-band (40-200 Hz) synchronization across M1 during treadmill walking, as well as periodic γ-band changes within each stride (across multiple walking speeds). Additionally, these changes appeared to be of motor, rather than sensory, origin. However, M1 activity during walking shared few features with M1 activity during individual leg muscle movements, and was not highly correlated with lower limb trajectories on a single channel basis. These findings suggest that M1 primarily encodes high-level gait motor control (i.e., walking duration and speed) instead of the low-level patterns of leg muscle activation or movement trajectories. Therefore, M1 likely interacts with subcortical/spinal networks, which are responsible for low-level motor control, to produce normal human walking.


Assuntos
Ondas Encefálicas/fisiologia , Eletrocorticografia , Marcha/fisiologia , Perna (Membro)/inervação , Córtex Motor/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Córtex Motor/diagnóstico por imagem , Movimento/fisiologia , Caminhada/fisiologia
4.
IEEE Trans Biomed Circuits Syst ; 11(5): 1111-1122, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28783638

RESUMO

Two brain signal acquisition (BSA) front-ends incorporating two CMOS ultralow power, low-noise amplifier arrays and serializers operating in mosfet weak inversion region are presented. To boost the amplifier's gain for a given current budget, cross-coupled-pair active load topology is used in the first stages of these two amplifiers. These two BSA front-ends are fabricated in 130 and 180 nm CMOS processes, occupying 5.45 mm 2 and 0.352 mm 2 of die areas, respectively (excluding pad rings). The CMOS 130-nm amplifier array is comprised of 64 elements, where each amplifier element consumes 0.216 µW from 0.4 V supply, has input-referred noise voltage (IRNoise) of 2.19 µV[Formula: see text] corresponding to a power efficiency factor (PEF) of 11.7, and occupies 0.044 mm 2 of die area. The CMOS 180 nm amplifier array employs 4 elements, where each element consumes 0.69 µW from 0.6 V supply with IRNoise of 2.3 µV[Formula: see text] (corresponding to a PEF of 31.3) and 0.051 mm 2 of die area. Noninvasive electroencephalographic and invasive electrocorticographic signals were recorded real time directly on able-bodied human subjects, showing feasibility of using these analog front-ends for future fully implantable BSA and brain- computer interface systems.


Assuntos
Amplificadores Eletrônicos , Encéfalo/fisiologia , Eletrocorticografia/métodos , Adulto , Encéfalo/diagnóstico por imagem , Interfaces Cérebro-Computador , Eletrocorticografia/instrumentação , Eletrodos Implantados , Desenho de Equipamento , Humanos , Imageamento por Ressonância Magnética , Masculino , Processamento de Sinais Assistido por Computador , Razão Sinal-Ruído
5.
Brain Struct Funct ; 222(8): 3705-3748, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28523425

RESUMO

The mechanism by which the human primary motor cortex (M1) encodes upper extremity movement kinematics is not fully understood. For example, human electrocorticogram (ECoG) signals have been shown to modulate with upper extremity movements; however, this relationship has not been explicitly characterized. To address this issue, we recorded high-density ECoG signals from patients undergoing epilepsy surgery evaluation as they performed elementary upper extremity movements while systematically varying movement speed and duration. Specifically, subjects performed intermittent pincer grasp/release, elbow flexion/extension, and shoulder flexion/extension at slow, moderate, and fast speeds. In all movements, bursts of power in the high-[Formula: see text] band (80-160 Hz) were observed in M1. In addition, the amplitude of these power bursts and the area of M1 with elevated high-[Formula: see text] activity were directly proportional to the movement speed. Likewise, the duration of elevated high-[Formula: see text] activity increased with movement duration. Based on linear regression, M1 high-[Formula: see text] power amplitude and duration covaried with movement speed and duration, respectively, with an average [Formula: see text] of [Formula: see text] and [Formula: see text]. These findings indicate that the encoding of upper extremity movement speed by M1 high-[Formula: see text] activity is primarily linear. Also, the fact that this activity remained elevated throughout a movement suggests that M1 does not merely generate transient instructions for a specific movement duration, but instead is responsible for the entirety of the movement. Finally, the spatial distribution of high-[Formula: see text] activity suggests the presence of a recruitment phenomenon in which higher speeds or increased muscle activity involve activation of larger M1 areas.


Assuntos
Ritmo Gama , Córtex Motor/fisiologia , Movimento , Extremidade Superior/fisiologia , Adulto , Eletrocorticografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Atividade Motora , Processamento de Sinais Assistido por Computador , Adulto Jovem
6.
IEEE Trans Biomed Eng ; 64(10): 2313-2320, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28207382

RESUMO

OBJECTIVE: Conventional brain-computer interfaces (BCIs) are often expensive, complex to operate, and lack portability, which confines their use to laboratory settings. Portable, inexpensive BCIs can mitigate these problems, but it remains unclear whether their low-cost design compromises their performance. Therefore, we developed a portable, low-cost BCI and compared its performance to that of a conventional BCI. METHODS: The BCI was assembled by integrating a custom electroencephalogram (EEG) amplifier with an open-source microcontroller and a touchscreen. The function of the amplifier was first validated against a commercial bioamplifier, followed by a head-to-head comparison between the custom BCI (using four EEG channels) and a conventional 32-channel BCI. Specifically, five able-bodied subjects were cued to alternate between hand opening/closing and remaining motionless while the BCI decoded their movement state in real time and provided visual feedback through a light emitting diode. Subjects repeated the above task for a total of 10 trials, and were unaware of which system was being used. The performance in each trial was defined as the temporal correlation between the cues and the decoded states. RESULTS: The EEG data simultaneously acquired with the custom and commercial amplifiers were visually similar and highly correlated ( ρ = 0.79). The decoding performances of the custom and conventional BCIs averaged across trials and subjects were 0.70 ± 0.12 and 0.68 ± 0.10, respectively, and were not significantly different. CONCLUSION: The performance of our portable, low-cost BCI is comparable to that of the conventional BCIs. SIGNIFICANCE: Platforms, such as the one developed here, are suitable for BCI applications outside of a laboratory.


Assuntos
Amplificadores Eletrônicos/economia , Mapeamento Encefálico/economia , Mapeamento Encefálico/instrumentação , Interfaces Cérebro-Computador/economia , Potenciais Evocados/fisiologia , Interface Usuário-Computador , Análise Custo-Benefício , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Miniaturização , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estados Unidos
7.
J Neural Eng ; 13(2): 026016, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26859341

RESUMO

OBJECTIVE: Electrocorticography (ECoG)-based brain-computer interface (BCI) is a promising platform for controlling arm prostheses. To restore functional independence, a BCI must be able to control arm prostheses along at least six degrees-of-freedoms (DOFs). Prior studies suggest that standard ECoG grids may be insufficient to decode multi-DOF arm movements. This study compared the ability of standard and high-density (HD) ECoG grids to decode the presence/absence of six elementary arm movements and the type of movement performed. APPROACH: Three subjects implanted with standard grids (4 mm diameter, 10 mm spacing) and three with HD grids (2 mm diameter, 4 mm spacing) had ECoG signals recorded while performing the following movements: (1) pincer grasp/release, (2) wrist flexion/extension, (3) pronation/supination, (4) elbow flexion/extension, (5) shoulder internal/external rotation, and (6) shoulder forward flexion/extension. Data from the primary motor cortex were used to train a state decoder to detect the presence/absence of movement, and a six-class decoder to distinguish between these movements. MAIN RESULTS: The average performances of the state decoders trained on HD ECoG data were superior (p = 3.05 × 10(-5)) to those of their standard grid counterparts across all combinations of the µ, ß, low-γ, and high-γ frequency bands. The average best decoding error for HD grids was 2.6%, compared to 8.5% of standard grids (chance 50%). The movement decoders trained on HD ECoG data were superior (p = 3.05 × 10(-5)) to those based on standard ECoG across all band combinations. The average best decoding errors of 11.9% and 33.1% were obtained for HD and standard grids, respectively (chance error 83.3%). These improvements can be attributed to higher electrode density and signal quality of HD grids. SIGNIFICANCE: Commonly used ECoG grids are inadequate for multi-DOF BCI arm prostheses. The performance gains by HD grids may eventually lead to independence-restoring BCI arm prosthesis.


Assuntos
Eletrocorticografia/métodos , Eletrocorticografia/normas , Eletrodos Implantados/normas , Córtex Motor/fisiologia , Adulto , Eletrocorticografia/instrumentação , Feminino , Humanos , Masculino , Adulto Jovem
8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 2776-2779, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28324971

RESUMO

Motor rehabilitation using brain-computer interface (BCI) systems may facilitate functional recovery in individuals after stroke or spinal cord injury. Nevertheless, these systems are typically ill-suited for widespread adoption due to their size, cost, and complexity. In this paper, a small, portable, and extremely cost-efficient (<;$200) BCI system has been developed using a custom electroencephalographic (EEG) amplifier array, and a commercial microcontroller and touchscreen. The system's performance was tested using a movement-related BCI task in 3 able-bodied subjects with minimal previous BCI experience. Specifically, subjects were instructed to alternate between relaxing and dorsiflexing their right foot, while their EEG was acquired and analyzed in real-time by the BCI system to decode their underlying movement state. The EEG signals acquired by the custom amplifier array were similar to those acquired by a commercial amplifier (maximum correlation coefficient ρ=0.85). During real-time BCI operation, the average correlation between instructional cues and decoded BCI states across all subjects (ρ=0.70) was comparable to that of full-size BCI systems. Small, portable, and inexpensive BCI systems such as the one reported here may promote a widespread adoption of BCI-based movement rehabilitation devices in stroke and spinal cord injury populations.


Assuntos
Interfaces Cérebro-Computador , Fontes de Energia Elétrica , Desenho de Equipamento , Traumatismos da Medula Espinal/reabilitação , Reabilitação do Acidente Vascular Cerebral , Análise Custo-Benefício , Eletroencefalografia , Humanos , Recuperação de Função Fisiológica , Acidente Vascular Cerebral
9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 4491-4494, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28325008

RESUMO

A fully implantable brain-computer interface (BCI) can be a practical tool to restore independence to those affected by spinal cord injury. We envision that such a BCI system will invasively acquire brain signals (e.g. electrocorticogram) and translate them into control commands for external prostheses. The feasibility of such a system was tested by implementing its benchtop analogue, centered around a commercial, ultra-low power (ULP) digital signal processor (DSP, TMS320C5517, Texas Instruments). A suite of signal processing and BCI algorithms, including (de)multiplexing, Fast Fourier Transform, power spectral density, principal component analysis, linear discriminant analysis, Bayes rule, and finite state machine was implemented and tested in the DSP. The system's signal acquisition fidelity was tested and characterized by acquiring harmonic signals from a function generator. In addition, the BCI decoding performance was tested, first with signals from a function generator, and subsequently using human electroencephalogram (EEG) during eyes opening and closing task. On average, the system spent 322 ms to process and analyze 2 s of data. Crosstalk (<;-65 dB) and harmonic distortion (~1%) were minimal. Timing jitter averaged 49 µs per 1000 ms. The online BCI decoding accuracies were 100% for both function generator and EEG data. These results show that a complex BCI algorithm can be executed on an ULP DSP without compromising performance. This suggests that the proposed hardware platform may be used as a basis for future, fully implantable BCI systems.


Assuntos
Interfaces Cérebro-Computador , Eletrocorticografia , Eletrodos Implantados , Processamento de Sinais Assistido por Computador/instrumentação , Traumatismos da Medula Espinal/terapia , Algoritmos , Teorema de Bayes , Análise Discriminante , Análise de Fourier , Humanos , Masculino , Análise de Componente Principal , Adulto Jovem
10.
J Neuroeng Rehabil ; 12: 80, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26400061

RESUMO

BACKGROUND: Direct brain control of overground walking in those with paraplegia due to spinal cord injury (SCI) has not been achieved. Invasive brain-computer interfaces (BCIs) may provide a permanent solution to this problem by directly linking the brain to lower extremity prostheses. To justify the pursuit of such invasive systems, the feasibility of BCI controlled overground walking should first be established in a noninvasive manner. To accomplish this goal, we developed an electroencephalogram (EEG)-based BCI to control a functional electrical stimulation (FES) system for overground walking and assessed its performance in an individual with paraplegia due to SCI. METHODS: An individual with SCI (T6 AIS B) was recruited for the study and was trained to operate an EEG-based BCI system using an attempted walking/idling control strategy. He also underwent muscle reconditioning to facilitate standing and overground walking with a commercial FES system. Subsequently, the BCI and FES systems were integrated and the participant engaged in several real-time walking tests using the BCI-FES system. This was done in both a suspended, off-the-ground condition, and an overground walking condition. BCI states, gyroscope, laser distance meter, and video recording data were used to assess the BCI performance. RESULTS: During the course of 19 weeks, the participant performed 30 real-time, BCI-FES controlled overground walking tests, and demonstrated the ability to purposefully operate the BCI-FES system by following verbal cues. Based on the comparison between the ground truth and decoded BCI states, he achieved information transfer rates >3 bit/s and correlations >0.9. No adverse events directly related to the study were observed. CONCLUSION: This proof-of-concept study demonstrates for the first time that restoring brain-controlled overground walking after paraplegia due to SCI is feasible. Further studies are warranted to establish the generalizability of these results in a population of individuals with paraplegia due to SCI. If this noninvasive system is successfully tested in population studies, the pursuit of permanent, invasive BCI walking prostheses may be justified. In addition, a simplified version of the current system may be explored as a noninvasive neurorehabilitative therapy in those with incomplete motor SCI.


Assuntos
Interfaces Cérebro-Computador , Terapia por Estimulação Elétrica/instrumentação , Terapia por Estimulação Elétrica/métodos , Paraplegia/reabilitação , Traumatismos da Medula Espinal/reabilitação , Encéfalo/fisiopatologia , Eletroencefalografia/métodos , Estudos de Viabilidade , Humanos , Masculino , Paraplegia/etiologia , Próteses e Implantes , Traumatismos da Medula Espinal/complicações , Caminhada/fisiologia
11.
J Neuroeng Rehabil ; 12: 57, 2015 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-26162751

RESUMO

BACKGROUND: Many stroke survivors have significant long-term gait impairment, often involving foot drop. Current physiotherapies provide limited recovery. Orthoses substitute for ankle strength, but they provide no lasting therapeutic effect. Brain-computer interface (BCI)-controlled functional electrical stimulation (FES) is a novel rehabilitative approach that may generate permanent neurological improvements. This study explores the safety and feasibility of a foot-drop-targeted BCI-FES physiotherapy in chronic stroke survivors. METHODS: Subjects (n = 9) operated an electroencephalogram-based BCI-FES system for foot dorsiflexion in 12 one-hour sessions over four weeks. Gait speed, dorsiflexion active range of motion (AROM), six-minute walk distance (6MWD), and Fugl-Meyer leg motor (FM-LM) scores were assessed before, during, and after therapy. The primary safety outcome measure was the proportion of subjects that deteriorated in gait speed by ≥0.16 m/s at one week or four weeks post-therapy. The secondary outcome measures were the proportion of subjects that experienced a clinically relevant decrease in dorsiflexion AROM (≥2.5°), 6MWD (≥20 %), and FM-LM score (≥10 %) at either post-therapy assessment. RESULTS: No subjects (0/9) experienced a clinically significant deterioration in gait speed, dorsiflexion AROM, 6MWT distance, or FM-LM score at either post-therapy assessment. Five subjects demonstrated a detectable increase (≥0.06 m/s) in gait speed, three subjects demonstrated a detectable increase (≥2.5°) in dorsiflexion AROM, five subjects demonstrated a detectable increase (≥10 %) in 6MWD, and three subjects demonstrated a detectable increase (≥10 %) in FM-LM. Five of the six subjects that exhibited a detectable increase in either post-therapy gait speed or 6MWD also exhibited significant (p < 0.01 using a Mann-Whitney U test) increases in electroencephalogram event-related synchronization/desynchronization. Additionally, two subjects experienced a clinically important increase (≥0.16 m/s) in gait speed, and four subjects experienced a clinically important increase (≥20 %) in 6MWD. Linear mixed models of gait speed, dorsiflexion AROM, 6MWD, and FM-LM scores suggest that BCI-FES therapy is associated with an increase in lower motor performance at a statistically, yet not clinically, significant level. CONCLUSION: BCI-FES therapy is safe. If it is shown to improve post-stroke gait function in future studies, it could provide a new gait rehabilitation option for severely impaired patients. Formal clinical trials are warranted.


Assuntos
Interfaces Cérebro-Computador , Terapia por Estimulação Elétrica/métodos , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/reabilitação , Modalidades de Fisioterapia/efeitos adversos , Modalidades de Fisioterapia/instrumentação , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral/complicações , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença Crônica , Terapia por Estimulação Elétrica/instrumentação , Eletroencefalografia , Estudos de Viabilidade , Feminino , Pé/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Segurança do Paciente , Amplitude de Movimento Articular , Reprodutibilidade dos Testes , Resultado do Tratamento , Caminhada
12.
Artigo em Inglês | MEDLINE | ID: mdl-25570189

RESUMO

The current treatment for ambulation after spinal cord injury (SCI) is to substitute the lost behavior with a wheelchair; however, this can result in many co-morbidities. Thus, novel solutions for the restoration of walking, such as brain-computer interfaces (BCI) and functional electrical stimulation (FES) devices, have been sought. This study reports on the first electroencephalogram (EEG) based BCI-FES system for overground walking, and its performance assessment in an individual with paraplegia due to SCI. The results revealed that the participant was able to purposefully operate the system continuously in real time. If tested in a larger population of SCI individuals, this system may pave the way for the restoration of overground walking after SCI.


Assuntos
Interfaces Cérebro-Computador , Estimulação Elétrica , Traumatismos da Medula Espinal/fisiopatologia , Caminhada/fisiologia , Adulto , Eletroencefalografia , Humanos , Masculino , Paraplegia
13.
Artigo em Inglês | MEDLINE | ID: mdl-25570190

RESUMO

Electrocorticogram (ECoG) is a promising long-term signal acquisition platform for brain-computer interface (BCI) systems such as upper extremity prostheses. Several studies have demonstrated decoding of arm and finger trajectories from ECoG high-gamma band (80-160 Hz) signals. In this study, we systematically vary the velocity of three elementary movement types (pincer grasp, elbow and shoulder flexion/extension) to test whether the high-gamma band encodes for the entirety of the movements, or merely the movement onset. To this end, linear regression models were created for the durations and amplitudes of high-gamma power bursts and velocity deflections. One subject with 8×8 high-density ECoG grid (4 mm center-to-center electrode spacing) participated in the experiment. The results of the regression models indicated that the power burst durations varied directly with the movement durations (e.g. R(2)=0.71 and slope=1.0 s/s for elbow). The persistence of power bursts for the duration of the movement suggests that the primary motor cortex (M1) is likely active for the entire duration of a movement, instead of providing a marker for the movement onset. On the other hand, the amplitudes were less co-varied. Furthermore, the electrodes of maximum R(2) conformed to somatotopic arrangement of the brain. Also, electrodes responsible for flexion and extension movements could be resolved on the high-density grid. In summary, these findings suggest that M1 may be directly responsible for activating the individual muscle motor units, and future BCI may be able to utilize them for better control of prostheses.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Movimento/fisiologia , Adulto , Cotovelo/fisiologia , Eletrocorticografia , Eletrodos Implantados , Força da Mão/fisiologia , Humanos , Modelos Lineares , Masculino , Córtex Motor/fisiologia , Ombro/fisiologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-25570191

RESUMO

Despite the prevalence of stroke-induced gait impairment due to foot drop, current rehabilitative practices to improve gait function are limited, and orthoses can be uncomfortable and do not provide long-lasting benefits. Therefore, novel modalities that may facilitate lasting neurological and functional improvements, such as brain-computer interfaces (BCIs), have been explored. In this article, we assess the feasibility of BCI-controlled functional electrical stimulation (FES) as a novel physiotherapy for post-stroke foot drop. Three chronic stroke survivors with foot drop received three, 1-hour sessions of therapy during 1 week. All subjects were able to purposefully operate the BCI-FES system in real time. Furthermore, the salient electroencephalographic (EEG) features used for classification by the data-driven methodology were determined to be physiologically relevant. Over the course of this short therapy, the subjects' dorsiflexion active range of motion (AROM) improved by 3°, 4°, and 8°, respectively. These results indicate that chronic stroke survivors can operate the BCI-FES system, and that BCI-FES intervention may promote functional improvements.


Assuntos
Interfaces Cérebro-Computador , Encéfalo/fisiologia , Estimulação Elétrica , Perna (Membro)/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Análise Discriminante , Eletroencefalografia , Marcha/fisiologia , Humanos , Modalidades de Fisioterapia , Amplitude de Movimento Articular , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...